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Abstract - 

Unlike robotics in the manufacturing industry, 

on-site construction robotics has to consider and 

address two unique challenges: 1) the rugged, 

evolving, and unstructured environment of typical 

work sites; 2) the reversed spatial relationship 

between the product and the manipulator, i.e. the 

manipulator has to travel to and localize itself at the 

work face, rather than a partially complete product 

arriving at an anchored manipulator. The presented 

research designed and implemented algorithms that 

address these challenges and enable autonomous 

robotic assembly of freeform modular structures on 

construction sites. Building on the authors’ previous 

work in computer-vision-based pose estimation, the 

designed algorithms enable a mobile robotic 

manipulator to: 1) autonomously identify and grasp 

prismatic building components (e.g., bricks, blocks) 

that are typically non-unique and arbitrarily stored 

on-site; and 2) assemble these components into pre-

designed modular structures. The algorithms use a 

single camera and a visual marker-based metrology 

to rapidly establish local reference frames and to 

detect staged building components. Based on the 

design of the structure being assembled, the 

algorithms automatically determine the assembly 

sequence. Implemented using a 7-axis KUKA KR100 

robotic manipulator, the presented robotic system 

has successfully assembled various structures 

autonomously as shown in Figure 1, demonstrating 

the designed algorithms’ effectiveness in autonomous 

on-site construction robotics applications. 
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1 Introduction 

Several studies have argued that among all industries, 

construction has seen a significant productivity decrease 

over the last several decades compared to other 

industries [1]. Construction has also been documented 

to have some of the highest rates of workspace injuries 

and fatalities [2]. Automation and robotics in 

construction (ARC) has the potential to relieve human 

workers from repetitive and dangerous tasks, and has 

been extensively promoted in the literature as a means 

of improving construction productivity and safety [3]. 

 

 
 

Figure 1 Curved wall assembled on-site by the 

designed autonomous robotic system 

 

Compared to the tangible benefits of automation and 

robotics identified by the manufacturing industry, the 

construction industry is still exploring feasible and 

broadly deployable ARC applications [3]. This can be 

attributed to several commercial and technical 

challenges. From the commercial perspective, the 

fragmented and risk-averse nature of the construction 

industry leads to little investment in ARC research 

causing construction to lag behind other industries [4]. 

On the other hand, as described next, there are several 

technical complexities inherent in construction that have 

contributed to hindering the successful development and 

widespread use of field construction robots. 

1) Unstructured Construction Environments 

Automated and robotized manufacturing facilities 

are typically considered as structured environments, 

since both the machines and evolving products either 

stay in their predefined locations or move on 

predesigned and typically fixed paths. In general, such 
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environments do not change shape or configuration 

during the performance of manufacturing tasks, making 

the enforcement of tight tolerances possible [5]. In 

contrast, construction sites can typically be considered 

unstructured since they are constantly evolving, and 

dramatically changing shape and form in response to 

construction tasks. Building components are moved 

around without fixed paths or laydown/staging areas. 

Various physical connections are established through 

improvisation in response to in-situ conditions, making 

tight tolerances hard to maintain and enforce [6]. 

2) Mobility of Construction Manipulators 

In manufacturing, factory robotics typically involves 

robotic platforms that are generally stationary (or have 

limited linear mobility) and partially complete products 

that arrive at robot workstations and precisely localize 

themselves in the robots’ reference frames. Precision is 

achieved by controlling the pose of the moving (and 

evolving) product, and the robots themselves are 

programmed to manipulate the products through fixed 

trajectories. Thus, from a mobility and cognitive 

perspective, a factory robot has little responsibility and 

autonomy. Control is achieved by enforcing tight 

tolerances in moving and securing the product in the 

manipulator’s vicinity. However, this spatial 

relationship is reversed in construction. A construction 

robot has to travel to its next workface (or be manually 

set up there), perceive its environment, account for the 

lack of tight tolerances, and then perform manipulation 

activities in that environment. This places a significant 

mobility and cognitive burden on a robot intended for 

construction tasks even if the task itself is repetitive. 

This discussion highlights that factory-style 

automation on construction sites requires development 

of robots that are significantly more mobile and 

perceptive when compared to typical industrial robots. 

Such on-site construction robots have to be able to 

semantically sense and adjust to their unstructured 

surroundings and the resulting loose tolerances. This 

paper proposes a new high-accuracy 3D machine vision 

metrology for mobile construction robots. The 

developed method uses fiducial markers to rapidly 

establish a local high-accuracy control environment for 

autonomous robot manipulation on construction sites. 

Using this method, it is possible to rapidly convert a 

portion of a large unstructured environment into a high-

accuracy, controllable reference frame that can allow a 

robot to operate autonomously (Figure 1). 

The rest of the paper is organized as follows: 

Related work is reviewed in section 2. The authors’ 

technical approach is discussed next in detail in section 

3. The experimental results are shown in section 4. 

Finally, in section 5, the conclusions are drawn and the 

authors’ future work is summarized. 

2 Previous Work 

The construction community has pursued ARC 

research for several decades. Various robotic platforms 

were prototyped focusing on specific construction 

activities (e.g., interior finishing robot [7], infrastructure 

inspection and maintenance robot [8], assembly robot 

[9], masonry robot [10]). During this research, it was 

realized that increasing the level of autonomy for 

construction robots requires high accuracy localization 

of the robot: from 3-5 cm indoor positional accuracy for 

contactless construction tasks such as spray-painting, to 

2-3 mm accuracy for more precise tasks demanding 

direct contact between manipulator and building 

components [11]. This requirement has posed a 

significant challenge for ARC because even by using 

current state-of-the-art simultaneous localization and 

mapping (SLAM) techniques, such accuracy is hard to 

achieve at large scales [12]. In order to address this 

issue, the authors chose to use computer-vision-based 

pose estimation algorithms that can achieve high 

accuracy locally around a visual marker [13, 14]. 

Recently the architectural design community has 

also shown an increased interest in industrial robotics, 

with many academic programs investing in their own 

robotic work cells
1
, leveraged as development platforms 

for the exploration and refinement of novel production 

techniques in which material behaviour is intrinsically 

linked to fabrication and assembly logic. As part of the 

general ecosystem of industrial robotics, computer 

vision systems have begun to play an increasingly 

important role in these research initiatives. 

Initially the majority of architectural robotic 

research utilizing computer vision has revolved around 

its application at the micro scale, using vision feedback 

systems to make incremental adjustments to a robotic 

strategy based upon local variations [15, 16]. While 

beneficial as a means to adjust for material variation and 

machine error, these implementations are not robust 

enough for the in-situ robotics due to the complexities 

of construction sites. 

Recently, architects have also begun to explore 

macro scale computer vision applications. At the 

forefront, an eight-meter-long module wall was 

assembled by an ABB robot along a gestural path 

captured by its vision system in the ECHORD project 

[17]. The mobile robot also used the same system to 

reposition itself on the construction site and make local 

adjustments based on topographic variation. Without 

using an extensive sensor suite like the one used in 

ECHORD, the robotic platform described in this paper 

successfully built similar module walls purely based on 

perceived information from a single camera. 
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Figure 2 Technical approach 

 

3 Technical Approach 

3.1 System Overview 

The developed robotic in-situ assembly system 

consists of 7 major components, as shown in Figure 2. 

The workflow of the system consists of an offline 

design process and an online building process. During 

the offline process, a designer models the intended 

structure in 3D, which is then analysed and validated by 

the automatic plan generator, outputting a building plan 

for the online process. The online building process uses 

a fixed camera mounted on the base of the robot for 

providing images to the pose estimator to detect staged 

building components and estimate their pose, and more 

importantly localize the robot itself in the local building 

reference frame. Having computed this information, the 

plan achiever then sequentially transforms each step 

from an automatically generated assembly plan into an 

executable command, which can be interpreted by the 

robot controller and subsequently executed by the robot 

manipulator. In addition, the visualization component 

also receives the information generated by the pose 

estimator as well as the robot’s real-time pose feedback 

from the controller, to simultaneously represent the 

actual on-site assembly process into a 3D virtual 

environment for improved monitoring. 

3.2 Calibration of Pose Estimator 

Before introducing the details of other components 

of the system, it is important to discuss how the pose 

estimator is calibrated, since this is crucial to the level 

of accuracy that the system can achieve. This process 

includes two steps: intrinsic and extrinsic calibration of 

the camera. Intrinsic calibration involves estimating the 

camera’s focal length, principle point’s position on the 

image plane, and distortion parameters. On the other 

hand, extrinsic calibration aims to determine the relative 

6-DOF pose of the camera in the robot’s coordinate 

frame. It must be noted that these two calibrations are a 

one-time process, as long as the camera is fixed-focus 

and rigidly mounted in the robot’s coordinate frame 

(e.g., fixed installation on the robot’s base). 

3.2.1 Intrinsic Parameters 

 
 

Figure 3 Intrinsic calibration of camera 

 

Unlike the popular plane-based camera calibration 

method [18] implemented in OpenCV
2

 and Matlab 

Calibration Toolbox
3
, the authors chose to calibrate the 

camera using a 3D rig, which is similar to the classic 

calibration in photogrammetry. This 3D rig was made 

by attaching 18 Apriltags [14] on two intersecting 

planes forming a 90 degree angle (as shown in the top 

of Figure 3) so that the 3D coordinate X of each 

Apriltag’s center could be readily measured. 

The process of calibration was then simply taking a 

sequence of N images of the rig and inputting them into 

the author-developed camera calibration tool
4
, which 

takes advantage of the Apriltag detection algorithm to 

detect the 2D image coordinate U of each tag center and 

establish correspondence with X. Then the initial 

camera intrinsic and extrinsic parameters can be 

obtained through Direct Linear Transform (DLT) [19] 

and subsequently optimized by bundle adjustment [20]. 

Benefitting from the high corner detection accuracy 

of Apriltag as well as the 3D rig, this intrinsic 
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calibration produces more robust and repeatable results 

than the alternatives mentioned above. 

3.2.2 Extrinsic Parameters 

 
 

Figure 4 Extrinsic calibration 

 

Once the camera’s intrinsic parameters are 

calibrated, the camera’s relative pose in the robot’s 

coordinate frame, [ , ; ,1]r r r
c c cT R t 0 , can be 

estimated using an extrinsic calibration marker 

containing 4 Apriltags with known size and spacing. 

As shown in Figure 4, r
cT  can be composed from 

the two other poses, m
rT , the robot’s pose in the 

extrinsic calibration marker’s coordinate frame, and 
c

mT , the marker’s pose in the camera coordinate frame, 

by 1( )r c m
c m r

T T T . 

This extrinsic calibration process consists of the 

following steps: 

1) Fix the marker in the camera’s field of view; 

2) Manually control the robot manipulator to 

pinpoint at least 4 non-collinear points on the 

marker and record their 3D coordinates 
r
X  in 

the robot’s coordinate frame; also measure their 

local 3D coordinates 
m

X  in the marker’s 

reference frame (by setting all Z coordinates to 

be zero); 

3) Take an image from the camera and detect the 4 

Apriltags’ 16 corners’ 2D image coordinates U. 

With this information collected, the m
rT  can be 

estimated using the well-known rigid body registration 

[21] from 3D point set 
r
X  to 

m
X , while the c

mT  can 

be estimated by decomposing the homography between 
m

X  and U using the previously calibrated camera 

intrinsic parameter K [18, 13]. 

In order to improve the extrinsic calibration’s 

accuracy, a non-linear optimization of c
mT  is also 

performed in addition, since during the homography 

decomposition, a polar decomposition is performed to 

get a valid rotation matrix c
mR , which causes the result 

to be non-optimal. This optimization, as shown in 

equation (1), can be done by tuning the initial c
mT  to 

minimize the re-projection error: 

 

 
16 2

1

arg min ( )
c c

m m

c m c
j m j m

j

 
R , t

U K R X t  (1) 

3.2.3 Calibration Validation 

The calibration can be validated by the following 

procedure: 

1) Fix the extrinsic calibration marker to a new 

pose that is different from the one used in the 

calibration; 

2) Measure, in robot frame, the 3D coordinates 
r
X  of a set of M corner points on the marker 

(e.g., the 16 corners used previously); 

3) Take an image and find out the corresponding 

3D coordinates c
X  in the camera reference 

frame using Apriltags; 

4) Calculate the residual using equation (2): 

 

 
2

1

1
( )

M
r r c r

j c j c

jM 

  X R X t  (2) 

 

This residual should ideally approach zero, as 

smaller residual indicates better calibration accuracy. 

3.3 Automatic Plan Generation 

3.3.1 Algorithmic Architectural Design 

Starting with the introduction of Ivan Sutherland’s 

Sketchpad at MIT in the 1963, the architectural 

exploration of computation has focused on the digital 

environment’s ability to represent an object as a system 

“compromised of and working with a series of 

interrelated systems” [22], a surprising contrast to the 

discrete geometric representations found in many 2D 

and 3D CAD applications. Initially as a domain of 

specialized research groups embedded in academia or 

commercial practices, this systems approach to digital 

design has become increasingly commonplace. In the 

1990s many architects, unsatisfied with the capabilities 

presented by off-the-self software, began to develop 

their own software solutions through both higher-level 

scripting languages for CAD packages and ground-up 

application development. Currently, visual 

programming interfaces that afford designers quick 
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access to the potential of computation without the effort 

of coding syntax are available as plug-ins for popular 

commercial software, such as Dynamo
5
 for Autodesk’s 

Revit and Grasshopper
6
 for McNeel’s Rhinoceros. 

The authors implemented this systems approach 

(and its respective tools) to automatically derive the 

robotic positioning data for each building block in a 

curved stack-unit wall from a single user-generated non-

uniform rational basis spline (NURBS) surface. 

Working from a predetermined block size, an algorithm 

developed in the Grasshopper plug-in for Rhinoceros 

extracts latitudinal section curves from the input surface, 

generating a running bond pattern of the said blocks. 

Each block is checked for volumetric collisions with 

adjacent blocks, color-coding collisions in the 

Rhinoceros environment. Instead of applying simple 

heuristics to arbitrarily resolve these collisions, the 

color-coding can provide real-time feedback, engaging 

the designer to actively participate in the development 

of the curved stack-unit wall. Simultaneously the 

necessary positional information for each block is 

output for the generation of the building plan. 

Combined into a single algorithmic process, these 

functions “enable an explicit and bidirectional traversal 

of the modern division between design and making” 

[23], reinforcing the implications of William Mitchell’s 

statement that “architects tend to draw what they can 

build, and build what they can draw” [24]. 

3.3.2 Building Plan Generation and Simulation 

Given the final positions and orientations of all the 

building blocks in the design, the building plan is 

generated and written into a text file stored for the plan 

achiever to process later during the online building 

phase. 

This building plan file contains a list of sequential 

instructions for the robot manipulator to build the 

designed structure. Each line in the file corresponds to 

an instruction. For example, the following plan file 

segment will instruct the robot manipulator to first grab 

a building component named “block0” directly from 

above (line 1-4), then lift it vertically up for 500 mm 

(line 5) and finally place it at its destination in another 

reference frame named “building” (line 6-8): 

Gripper 0 

Goto block0 0 0 500 0 0 0 

Goto block0 -12 -10 -10 0 0 0 

Gripper 1 

Shift 0 0 500 0 0 0 

Goto building 200.00 -300.00 500.00 -63.92 0.00 0.00 

Goto building 200.00 -300.00 19.05 -63.92 0.00 0.00 

Gripper 0 
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Currently, 3 types of instructions are implemented in 

the system: 

1) Gripper 0/1 
Control the manipulator’s gripper to open (0) or 

close (1); 

2) Goto reference_frame x y z a b c 

Control the manipulator to move to a new pose 

(x, y, z, a, b, c) in the reference frame, in which 

the (x, y, z) is the new position and (a, b, c) 

specifies the new orientation as three Euler 

angles in “ZYX” order; 

3) Shift x y z a b c 

Control the manipulator to incrementally move 

by (x, y, z, a, b, c). 

 

 
 

Figure 5 Building plan simulation 

 

This building plan can also be simulated in 

Rhinoceros to check if there exists any self-collision 

between the robot manipulator and the wall during the 

building process, as shown in Figure 5. 

3.4 Vision-based Plan Achiever 

3.4.1 Rapid Setup of Building Reference Frame 

As previously mentioned, the reversed spatial 

relationship of product and manipulator on construction 

sites poses a significant challenge for autonomous 

mobile robots. This is notably different from typical 

autonomous manufacturing spatial configurations, 

where robots’ bases are either stationary or have finite 

mobility, and materials/components can be readily 

staged at fixed locations within the manipulators’ static 

workspaces. In contract, for mobile robots to 

autonomously perform building tasks on unstructured 

construction sites, their bases require significant 

mobility, and consequently their manipulators’ 

workspaces are not fixed with respect to the 

construction site. In order to complete building tasks at 

the correct locations and assemble materials into their 

intended poses, a robotic system must be able to 

establish the accurate 6-DOF transformation between 

the robot’s base and the building reference frame at all 

times. As pointed out in [11], this requires the 

localization accuracy to be at least at centimeter level, 

which is far from achievable using state-of-the-art 

SLAM style techniques for mobile robots. 

http://autodeskvasari.com/dynamo
http://www.grasshopper3d.com/


 
 

Figure 6 Different reference frames 

 

In order to address this challenge, the authors 

propose a convenient and accurate solution using planar 

marker-based pose estimation [14, 13], as shown in 

Figure 6. By 1) attaching fiducial markers at appropriate 

locations on-site where building tasks are to be 

performed, 2) surveying their poses m
bT  in the building 

reference frame using a total station, and 3) storing 

these poses inside the system’s database, a mobile robot 

can readily estimate its base’s pose b
rT  inside the 

building reference frame using equation (3) whenever 

its on-board camera detects such a marker, based on 

previous calibration results: 

 

 1( )b r c m
r c m b

T T T T  (3) 

3.4.2 Conversion from Plans to Commands 

With the information input from the pose estimator, 

the vision-based plan achiever starts to execute the 

building plan generated beforehand, according to the 

following procedure: 

1) Read a single plan step (i.e. one line) from the 

building plan file; 

2) Wait until all the poses needed to convert this 

step into a building command become available; 

3) Convert this step into a command that is 

executable by the robot controller; 

4) Send the command to the robot controller; 

5) Wait for the controller to complete the 

command; 

6) Repeat this process unless all plan steps are 

completed, i.e. the plan is achieved. 

It must be noted that the core step of this procedure 

is the conversion from a plan step to an executable 

command. This is because the poses stored in the 

previously generated building plan are not completely 

specified in the robot’s base reference frame. Recall that 

every pose in the “Goto” step is specified in a 

“reference_frame” relatively. Specifying all steps in the 

building plan in the robot base reference frame is not 

possible because: a) during the design phase the 

designer conceives all component locations in the 

building reference frame; b) the robot’s base is expected 

to be mobile during the building phase; and c) more 

importantly, the building components will be arbitrarily 

transported and staged in the building reference frame in 

the vicinity of the robot manipulator’s workspace. This, 

in fact, is one of the core differences between on-site 

construction automation and manufacturing automation. 

In the authors’ approach, this conversion is 

facilitated by the aforementioned rapid setup of the 

building reference frame using markers. As long as the 

pose estimator can detect and report the transformation 

between the on-board camera and the marker used to 

specify the building reference frame, the poses in the 

plan steps can be readily converted to the robot base 

frame using equations similar to (3). Similarly, by 

attaching markers on the building components, the robot 

manipulator can detect and clasp them autonomously 

after the corresponding plan steps are converted. 

4 Experimental Results 

4.1 Design and Goal 

The authors implemented the designed algorithms 

into a robotic system using a 7-axis KUKA KR100 

robotic arm, a Point Grey Firefly MV camera, and a 

laptop with an Intel i7 CPU, connected through the 

Robot Operating System (ROS)
7
. Each component in 

Figure 2 except for the plan generator and robot 

manipulator is a process corresponding to a ROS node. 

The camera node sends images of size 1280 pixels by 

960 pixels to the pose estimator that implements the 

Apriltag detection algorithm in C/C++. The plan 

achiever was implemented in Python. The robot 

controller was also developed using Python to send and 

receive control signals via Ethernet through KUKA’s 

native Robot Sensor Interface (RSI). Inside this 

controller, a 6-DOF PID control algorithm was 

employed to drive the robot manipulator (with a two-

finger gripper) to its destination pose when executing 

commands from the plan achiever. The involved inverse 

kinematics computations are performed inside the 

KUKA manipulator’s controlling middleware. 

In the first phase of experiments, the robot was 

tasked with assembling a section of a curved wall, as 

designed in section 3.3.1. The design was shown in 

Figure 2. The building components used were a set of 

170x70x20mm
3
 medium-density fibreboard (MDF) 

blocks, each affixed with two different 56x56mm
2
 

Apriltags. The building reference frame was setup by 4 

different 276x276mm
2
 Apriltags. The overall goal of the 

experiment was to test the robot’s ability to 

autonomously build the designed wall. 
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Figure 7 Autonomous assembly experiments 

 

4.2 Results and Discussion 

The system was first calibrated and validated using 

the methods discussed earlier. The validation residual 

calculated using equation (2) was found to be less than 

1mm. With the accurately calibrated intrinsic and 

extrinsic parameters, the online building process 

proceeded smoothly. The building blocks were affixed 

with smaller markers, which decreased the building 

block localization accuracy to centimetre level (2cm) 

during the clasping process. The error was however 

compensated by the tolerance of the gripper. 

 

 
 

Figure 8 Block detection and grasp using Kinect 

 

A working cycle of the autonomous building process 

was shown in Figure 7(a)-(d). Since the pose estimator 

was constantly monitoring and updating the poses of 

each marker, the system was naturally capable of 

automatically adapting to pose changes on-site. As 

shown in Figure 7(e)-(h), when a building block’s pose 

changed, the robot manipulator was automatically able 

to pick it up at its newest location. A video recording of 

the experiment can be found online at the following 

URL: http://youtu.be/fj7AXRpj97o. A fully assembled 

three-layer curved wall approximately 1.5m in length 

was previously shown in Figure 1. Although not closely 

related to the core contribution of this paper, it’s worth 

noting that the block detection and grasp can also be 

achieved without markers using Kinect sensor and the 

author’s newly developed fast plane extraction 

algorithm [25], as shown in Figure 8 and demonstrated 

at the following URL: http://youtu.be/CyX4Pr_xly0. 

5 Conclusion and Future Work 

This paper reported algorithms and an implemented 

robotic system that is able to automatically generate 

building plans from computational architectural designs 

and achieve these plans autonomously on construction 

sites. In order to address the localization accuracy 

challenge, the authors proposed a computer-vision-

based sub-centimetre-level metrology that enables pose 

estimation using planar markers. The conducted 

evaluation experiments used the designed robotic 

system to autonomously build a curved wall of MDF 

blocks, proving the algorithms and the system’s ability 

to meet the accuracy requirement when building 

computational architecture designs. 

The authors’ current and planned work in this 

research direction is focused on continuously improving 

this system in aspects such as 3D perception for 

efficient object grasping, autonomous navigation for 

implementation on mobile platform, and improved and 

stable control algorithms. 

(a) Pick (b) Lift (c) Move (d) Drop

(e) Before change (f) During change (g) Auto-adapt to change (h) Successfully pick up

Kinect Sensor

Block Grasp
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