

Towards Autonomous Robotic In-Situ Assembly

on Unstructured Construction Sites Using Monocular Vision

C. Feng
a
, Y. Xiao

a
, A. Willette

b
, W. McGee

b
, and V.R. Kamat

a

a
Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, USA

b
College of Architecture and Urban Planning, University of Michigan, Ann Arbor, USA

E-mail: cforrest@umich.edu, yongxiao@umich.edu, willetta@umich.edu, wesmcgee@umich.edu,

vkamat@umich.edu

Abstract -

Unlike robotics in the manufacturing industry,

on-site construction robotics has to consider and

address two unique challenges: 1) the rugged,

evolving, and unstructured environment of typical

work sites; 2) the reversed spatial relationship

between the product and the manipulator, i.e. the

manipulator has to travel to and localize itself at the

work face, rather than a partially complete product

arriving at an anchored manipulator. The presented

research designed and implemented algorithms that

address these challenges and enable autonomous

robotic assembly of freeform modular structures on

construction sites. Building on the authors’ previous

work in computer-vision-based pose estimation, the

designed algorithms enable a mobile robotic

manipulator to: 1) autonomously identify and grasp

prismatic building components (e.g., bricks, blocks)

that are typically non-unique and arbitrarily stored

on-site; and 2) assemble these components into pre-

designed modular structures. The algorithms use a

single camera and a visual marker-based metrology

to rapidly establish local reference frames and to

detect staged building components. Based on the

design of the structure being assembled, the

algorithms automatically determine the assembly

sequence. Implemented using a 7-axis KUKA KR100

robotic manipulator, the presented robotic system

has successfully assembled various structures

autonomously as shown in Figure 1, demonstrating

the designed algorithms’ effectiveness in autonomous

on-site construction robotics applications.

Keywords -

On-Site Construction Robotics; Autonomous

Assembly; Modular Construction; Pose Estimation

1 Introduction

Several studies have argued that among all industries,

construction has seen a significant productivity decrease

over the last several decades compared to other

industries [1]. Construction has also been documented

to have some of the highest rates of workspace injuries

and fatalities [2]. Automation and robotics in

construction (ARC) has the potential to relieve human

workers from repetitive and dangerous tasks, and has

been extensively promoted in the literature as a means

of improving construction productivity and safety [3].

Figure 1 Curved wall assembled on-site by the

designed autonomous robotic system

Compared to the tangible benefits of automation and

robotics identified by the manufacturing industry, the

construction industry is still exploring feasible and

broadly deployable ARC applications [3]. This can be

attributed to several commercial and technical

challenges. From the commercial perspective, the

fragmented and risk-averse nature of the construction

industry leads to little investment in ARC research

causing construction to lag behind other industries [4].

On the other hand, as described next, there are several

technical complexities inherent in construction that have

contributed to hindering the successful development and

widespread use of field construction robots.

1) Unstructured Construction Environments

Automated and robotized manufacturing facilities

are typically considered as structured environments,

since both the machines and evolving products either

stay in their predefined locations or move on

predesigned and typically fixed paths. In general, such

mailto:cforrest@umich.edu
mailto:yongxiao@umich.edu
mailto:willetta@umich.edu
mailto:wesmcgee@umich.edu
mailto:vkamat@umich.edu

environments do not change shape or configuration

during the performance of manufacturing tasks, making

the enforcement of tight tolerances possible [5]. In

contrast, construction sites can typically be considered

unstructured since they are constantly evolving, and

dramatically changing shape and form in response to

construction tasks. Building components are moved

around without fixed paths or laydown/staging areas.

Various physical connections are established through

improvisation in response to in-situ conditions, making

tight tolerances hard to maintain and enforce [6].

2) Mobility of Construction Manipulators

In manufacturing, factory robotics typically involves

robotic platforms that are generally stationary (or have

limited linear mobility) and partially complete products

that arrive at robot workstations and precisely localize

themselves in the robots’ reference frames. Precision is

achieved by controlling the pose of the moving (and

evolving) product, and the robots themselves are

programmed to manipulate the products through fixed

trajectories. Thus, from a mobility and cognitive

perspective, a factory robot has little responsibility and

autonomy. Control is achieved by enforcing tight

tolerances in moving and securing the product in the

manipulator’s vicinity. However, this spatial

relationship is reversed in construction. A construction

robot has to travel to its next workface (or be manually

set up there), perceive its environment, account for the

lack of tight tolerances, and then perform manipulation

activities in that environment. This places a significant

mobility and cognitive burden on a robot intended for

construction tasks even if the task itself is repetitive.

This discussion highlights that factory-style

automation on construction sites requires development

of robots that are significantly more mobile and

perceptive when compared to typical industrial robots.

Such on-site construction robots have to be able to

semantically sense and adjust to their unstructured

surroundings and the resulting loose tolerances. This

paper proposes a new high-accuracy 3D machine vision

metrology for mobile construction robots. The

developed method uses fiducial markers to rapidly

establish a local high-accuracy control environment for

autonomous robot manipulation on construction sites.

Using this method, it is possible to rapidly convert a

portion of a large unstructured environment into a high-

accuracy, controllable reference frame that can allow a

robot to operate autonomously (Figure 1).

The rest of the paper is organized as follows:

Related work is reviewed in section 2. The authors’

technical approach is discussed next in detail in section

3. The experimental results are shown in section 4.

Finally, in section 5, the conclusions are drawn and the

authors’ future work is summarized.

2 Previous Work

The construction community has pursued ARC

research for several decades. Various robotic platforms

were prototyped focusing on specific construction

activities (e.g., interior finishing robot [7], infrastructure

inspection and maintenance robot [8], assembly robot

[9], masonry robot [10]). During this research, it was

realized that increasing the level of autonomy for

construction robots requires high accuracy localization

of the robot: from 3-5 cm indoor positional accuracy for

contactless construction tasks such as spray-painting, to

2-3 mm accuracy for more precise tasks demanding

direct contact between manipulator and building

components [11]. This requirement has posed a

significant challenge for ARC because even by using

current state-of-the-art simultaneous localization and

mapping (SLAM) techniques, such accuracy is hard to

achieve at large scales [12]. In order to address this

issue, the authors chose to use computer-vision-based

pose estimation algorithms that can achieve high

accuracy locally around a visual marker [13, 14].

Recently the architectural design community has

also shown an increased interest in industrial robotics,

with many academic programs investing in their own

robotic work cells
1
, leveraged as development platforms

for the exploration and refinement of novel production

techniques in which material behaviour is intrinsically

linked to fabrication and assembly logic. As part of the

general ecosystem of industrial robotics, computer

vision systems have begun to play an increasingly

important role in these research initiatives.

Initially the majority of architectural robotic

research utilizing computer vision has revolved around

its application at the micro scale, using vision feedback

systems to make incremental adjustments to a robotic

strategy based upon local variations [15, 16]. While

beneficial as a means to adjust for material variation and

machine error, these implementations are not robust

enough for the in-situ robotics due to the complexities

of construction sites.

Recently, architects have also begun to explore

macro scale computer vision applications. At the

forefront, an eight-meter-long module wall was

assembled by an ABB robot along a gestural path

captured by its vision system in the ECHORD project

[17]. The mobile robot also used the same system to

reposition itself on the construction site and make local

adjustments based on topographic variation. Without

using an extensive sensor suite like the one used in

ECHORD, the robotic platform described in this paper

successfully built similar module walls purely based on

perceived information from a single camera.

1

 http://www.robotsinarchitecture.org/map-of-robots-in-

architecture

http://www.robotsinarchitecture.org/map-of-robots-in-architecture
http://www.robotsinarchitecture.org/map-of-robots-in-architecture

Figure 2 Technical approach

3 Technical Approach

3.1 System Overview

The developed robotic in-situ assembly system

consists of 7 major components, as shown in Figure 2.

The workflow of the system consists of an offline

design process and an online building process. During

the offline process, a designer models the intended

structure in 3D, which is then analysed and validated by

the automatic plan generator, outputting a building plan

for the online process. The online building process uses

a fixed camera mounted on the base of the robot for

providing images to the pose estimator to detect staged

building components and estimate their pose, and more

importantly localize the robot itself in the local building

reference frame. Having computed this information, the

plan achiever then sequentially transforms each step

from an automatically generated assembly plan into an

executable command, which can be interpreted by the

robot controller and subsequently executed by the robot

manipulator. In addition, the visualization component

also receives the information generated by the pose

estimator as well as the robot’s real-time pose feedback

from the controller, to simultaneously represent the

actual on-site assembly process into a 3D virtual

environment for improved monitoring.

3.2 Calibration of Pose Estimator

Before introducing the details of other components

of the system, it is important to discuss how the pose

estimator is calibrated, since this is crucial to the level

of accuracy that the system can achieve. This process

includes two steps: intrinsic and extrinsic calibration of

the camera. Intrinsic calibration involves estimating the

camera’s focal length, principle point’s position on the

image plane, and distortion parameters. On the other

hand, extrinsic calibration aims to determine the relative

6-DOF pose of the camera in the robot’s coordinate

frame. It must be noted that these two calibrations are a

one-time process, as long as the camera is fixed-focus

and rigidly mounted in the robot’s coordinate frame

(e.g., fixed installation on the robot’s base).

3.2.1 Intrinsic Parameters

Figure 3 Intrinsic calibration of camera

Unlike the popular plane-based camera calibration

method [18] implemented in OpenCV
2

 and Matlab

Calibration Toolbox
3
, the authors chose to calibrate the

camera using a 3D rig, which is similar to the classic

calibration in photogrammetry. This 3D rig was made

by attaching 18 Apriltags [14] on two intersecting

planes forming a 90 degree angle (as shown in the top

of Figure 3) so that the 3D coordinate X of each

Apriltag’s center could be readily measured.

The process of calibration was then simply taking a

sequence of N images of the rig and inputting them into

the author-developed camera calibration tool
4
, which

takes advantage of the Apriltag detection algorithm to

detect the 2D image coordinate U of each tag center and

establish correspondence with X. Then the initial

camera intrinsic and extrinsic parameters can be

obtained through Direct Linear Transform (DLT) [19]

and subsequently optimized by bundle adjustment [20].

Benefitting from the high corner detection accuracy

of Apriltag as well as the 3D rig, this intrinsic

2

http://docs.opencv.org/doc/tutorials/calib3d/camera_cali

bration/camera_calibration.html
3
 http://www.vision.caltech.edu/bouguetj/calib_doc/

4
 Available at https://code.google.com/p/cv2cg/#apriltag

Robot ManipulatorAutomatic Plan Generator

Plan Achiever

Plan

Pose Estimator
(ID, Pose)

Robot Controller
Command

Camera

Image

Visualization

Robot Pose

(ID, Pose)

http://docs.opencv.org/doc/tutorials/calib3d/camera_calibration/camera_calibration.html
http://docs.opencv.org/doc/tutorials/calib3d/camera_calibration/camera_calibration.html
http://www.vision.caltech.edu/bouguetj/calib_doc/
https://code.google.com/p/cv2cg/%23apriltag

calibration produces more robust and repeatable results

than the alternatives mentioned above.

3.2.2 Extrinsic Parameters

Figure 4 Extrinsic calibration

Once the camera’s intrinsic parameters are

calibrated, the camera’s relative pose in the robot’s

coordinate frame, [, ; ,1]r r r
c c cT R t 0 , can be

estimated using an extrinsic calibration marker

containing 4 Apriltags with known size and spacing.

As shown in Figure 4, r
cT can be composed from

the two other poses, m
rT , the robot’s pose in the

extrinsic calibration marker’s coordinate frame, and
c

mT , the marker’s pose in the camera coordinate frame,

by 1()r c m
c m r

T T T .

This extrinsic calibration process consists of the

following steps:

1) Fix the marker in the camera’s field of view;

2) Manually control the robot manipulator to

pinpoint at least 4 non-collinear points on the

marker and record their 3D coordinates
r
X in

the robot’s coordinate frame; also measure their

local 3D coordinates
m

X in the marker’s

reference frame (by setting all Z coordinates to

be zero);

3) Take an image from the camera and detect the 4

Apriltags’ 16 corners’ 2D image coordinates U.

With this information collected, the m
rT can be

estimated using the well-known rigid body registration

[21] from 3D point set
r
X to

m
X , while the c

mT can

be estimated by decomposing the homography between
m

X and U using the previously calibrated camera

intrinsic parameter K [18, 13].

In order to improve the extrinsic calibration’s

accuracy, a non-linear optimization of c
mT is also

performed in addition, since during the homography

decomposition, a polar decomposition is performed to

get a valid rotation matrix c
mR , which causes the result

to be non-optimal. This optimization, as shown in

equation (1), can be done by tuning the initial c
mT to

minimize the re-projection error:

16 2

1

arg min ()
c c

m m

c m c
j m j m

j

R , t

U K R X t (1)

3.2.3 Calibration Validation

The calibration can be validated by the following

procedure:

1) Fix the extrinsic calibration marker to a new

pose that is different from the one used in the

calibration;

2) Measure, in robot frame, the 3D coordinates
r
X of a set of M corner points on the marker

(e.g., the 16 corners used previously);

3) Take an image and find out the corresponding

3D coordinates c
X in the camera reference

frame using Apriltags;

4) Calculate the residual using equation (2):

2

1

1
()

M
r r c r

j c j c

jM

 X R X t (2)

This residual should ideally approach zero, as

smaller residual indicates better calibration accuracy.

3.3 Automatic Plan Generation

3.3.1 Algorithmic Architectural Design

Starting with the introduction of Ivan Sutherland’s

Sketchpad at MIT in the 1963, the architectural

exploration of computation has focused on the digital

environment’s ability to represent an object as a system

“compromised of and working with a series of

interrelated systems” [22], a surprising contrast to the

discrete geometric representations found in many 2D

and 3D CAD applications. Initially as a domain of

specialized research groups embedded in academia or

commercial practices, this systems approach to digital

design has become increasingly commonplace. In the

1990s many architects, unsatisfied with the capabilities

presented by off-the-self software, began to develop

their own software solutions through both higher-level

scripting languages for CAD packages and ground-up

application development. Currently, visual

programming interfaces that afford designers quick

Camera

X
c

Yc

Zc

Xr

Yr

Zr

Robot

Extrinsic Calibration Marker

Xm

Ym

Zm

cTm

m
Tr

rTc

access to the potential of computation without the effort

of coding syntax are available as plug-ins for popular

commercial software, such as Dynamo
5
 for Autodesk’s

Revit and Grasshopper
6
 for McNeel’s Rhinoceros.

The authors implemented this systems approach

(and its respective tools) to automatically derive the

robotic positioning data for each building block in a

curved stack-unit wall from a single user-generated non-

uniform rational basis spline (NURBS) surface.

Working from a predetermined block size, an algorithm

developed in the Grasshopper plug-in for Rhinoceros

extracts latitudinal section curves from the input surface,

generating a running bond pattern of the said blocks.

Each block is checked for volumetric collisions with

adjacent blocks, color-coding collisions in the

Rhinoceros environment. Instead of applying simple

heuristics to arbitrarily resolve these collisions, the

color-coding can provide real-time feedback, engaging

the designer to actively participate in the development

of the curved stack-unit wall. Simultaneously the

necessary positional information for each block is

output for the generation of the building plan.

Combined into a single algorithmic process, these

functions “enable an explicit and bidirectional traversal

of the modern division between design and making”

[23], reinforcing the implications of William Mitchell’s

statement that “architects tend to draw what they can

build, and build what they can draw” [24].

3.3.2 Building Plan Generation and Simulation

Given the final positions and orientations of all the

building blocks in the design, the building plan is

generated and written into a text file stored for the plan

achiever to process later during the online building

phase.

This building plan file contains a list of sequential

instructions for the robot manipulator to build the

designed structure. Each line in the file corresponds to

an instruction. For example, the following plan file

segment will instruct the robot manipulator to first grab

a building component named “block0” directly from

above (line 1-4), then lift it vertically up for 500 mm

(line 5) and finally place it at its destination in another

reference frame named “building” (line 6-8):

Gripper 0

Goto block0 0 0 500 0 0 0

Goto block0 -12 -10 -10 0 0 0

Gripper 1

Shift 0 0 500 0 0 0

Goto building 200.00 -300.00 500.00 -63.92 0.00 0.00

Goto building 200.00 -300.00 19.05 -63.92 0.00 0.00

Gripper 0

5
 http://autodeskvasari.com/dynamo

6
 http://www.grasshopper3d.com/

Currently, 3 types of instructions are implemented in

the system:

1) Gripper 0/1
Control the manipulator’s gripper to open (0) or

close (1);

2) Goto reference_frame x y z a b c

Control the manipulator to move to a new pose

(x, y, z, a, b, c) in the reference frame, in which

the (x, y, z) is the new position and (a, b, c)

specifies the new orientation as three Euler

angles in “ZYX” order;

3) Shift x y z a b c

Control the manipulator to incrementally move

by (x, y, z, a, b, c).

Figure 5 Building plan simulation

This building plan can also be simulated in

Rhinoceros to check if there exists any self-collision

between the robot manipulator and the wall during the

building process, as shown in Figure 5.

3.4 Vision-based Plan Achiever

3.4.1 Rapid Setup of Building Reference Frame

As previously mentioned, the reversed spatial

relationship of product and manipulator on construction

sites poses a significant challenge for autonomous

mobile robots. This is notably different from typical

autonomous manufacturing spatial configurations,

where robots’ bases are either stationary or have finite

mobility, and materials/components can be readily

staged at fixed locations within the manipulators’ static

workspaces. In contract, for mobile robots to

autonomously perform building tasks on unstructured

construction sites, their bases require significant

mobility, and consequently their manipulators’

workspaces are not fixed with respect to the

construction site. In order to complete building tasks at

the correct locations and assemble materials into their

intended poses, a robotic system must be able to

establish the accurate 6-DOF transformation between

the robot’s base and the building reference frame at all

times. As pointed out in [11], this requires the

localization accuracy to be at least at centimeter level,

which is far from achievable using state-of-the-art

SLAM style techniques for mobile robots.

http://autodeskvasari.com/dynamo
http://www.grasshopper3d.com/

Figure 6 Different reference frames

In order to address this challenge, the authors

propose a convenient and accurate solution using planar

marker-based pose estimation [14, 13], as shown in

Figure 6. By 1) attaching fiducial markers at appropriate

locations on-site where building tasks are to be

performed, 2) surveying their poses m
bT in the building

reference frame using a total station, and 3) storing

these poses inside the system’s database, a mobile robot

can readily estimate its base’s pose b
rT inside the

building reference frame using equation (3) whenever

its on-board camera detects such a marker, based on

previous calibration results:

 1()b r c m
r c m b

T T T T (3)

3.4.2 Conversion from Plans to Commands

With the information input from the pose estimator,

the vision-based plan achiever starts to execute the

building plan generated beforehand, according to the

following procedure:

1) Read a single plan step (i.e. one line) from the

building plan file;

2) Wait until all the poses needed to convert this

step into a building command become available;

3) Convert this step into a command that is

executable by the robot controller;

4) Send the command to the robot controller;

5) Wait for the controller to complete the

command;

6) Repeat this process unless all plan steps are

completed, i.e. the plan is achieved.

It must be noted that the core step of this procedure

is the conversion from a plan step to an executable

command. This is because the poses stored in the

previously generated building plan are not completely

specified in the robot’s base reference frame. Recall that

every pose in the “Goto” step is specified in a

“reference_frame” relatively. Specifying all steps in the

building plan in the robot base reference frame is not

possible because: a) during the design phase the

designer conceives all component locations in the

building reference frame; b) the robot’s base is expected

to be mobile during the building phase; and c) more

importantly, the building components will be arbitrarily

transported and staged in the building reference frame in

the vicinity of the robot manipulator’s workspace. This,

in fact, is one of the core differences between on-site

construction automation and manufacturing automation.

In the authors’ approach, this conversion is

facilitated by the aforementioned rapid setup of the

building reference frame using markers. As long as the

pose estimator can detect and report the transformation

between the on-board camera and the marker used to

specify the building reference frame, the poses in the

plan steps can be readily converted to the robot base

frame using equations similar to (3). Similarly, by

attaching markers on the building components, the robot

manipulator can detect and clasp them autonomously

after the corresponding plan steps are converted.

4 Experimental Results

4.1 Design and Goal

The authors implemented the designed algorithms

into a robotic system using a 7-axis KUKA KR100

robotic arm, a Point Grey Firefly MV camera, and a

laptop with an Intel i7 CPU, connected through the

Robot Operating System (ROS)
7
. Each component in

Figure 2 except for the plan generator and robot

manipulator is a process corresponding to a ROS node.

The camera node sends images of size 1280 pixels by

960 pixels to the pose estimator that implements the

Apriltag detection algorithm in C/C++. The plan

achiever was implemented in Python. The robot

controller was also developed using Python to send and

receive control signals via Ethernet through KUKA’s

native Robot Sensor Interface (RSI). Inside this

controller, a 6-DOF PID control algorithm was

employed to drive the robot manipulator (with a two-

finger gripper) to its destination pose when executing

commands from the plan achiever. The involved inverse

kinematics computations are performed inside the

KUKA manipulator’s controlling middleware.

In the first phase of experiments, the robot was

tasked with assembling a section of a curved wall, as

designed in section 3.3.1. The design was shown in

Figure 2. The building components used were a set of

170x70x20mm
3
 medium-density fibreboard (MDF)

blocks, each affixed with two different 56x56mm
2

Apriltags. The building reference frame was setup by 4

different 276x276mm
2
 Apriltags. The overall goal of the

experiment was to test the robot’s ability to

autonomously build the designed wall.

7
 http://www.ros.org/

Camera

Site

Building

Robot

http://www.ros.org/

Figure 7 Autonomous assembly experiments

4.2 Results and Discussion

The system was first calibrated and validated using

the methods discussed earlier. The validation residual

calculated using equation (2) was found to be less than

1mm. With the accurately calibrated intrinsic and

extrinsic parameters, the online building process

proceeded smoothly. The building blocks were affixed

with smaller markers, which decreased the building

block localization accuracy to centimetre level (2cm)

during the clasping process. The error was however

compensated by the tolerance of the gripper.

Figure 8 Block detection and grasp using Kinect

A working cycle of the autonomous building process

was shown in Figure 7(a)-(d). Since the pose estimator

was constantly monitoring and updating the poses of

each marker, the system was naturally capable of

automatically adapting to pose changes on-site. As

shown in Figure 7(e)-(h), when a building block’s pose

changed, the robot manipulator was automatically able

to pick it up at its newest location. A video recording of

the experiment can be found online at the following

URL: http://youtu.be/fj7AXRpj97o. A fully assembled

three-layer curved wall approximately 1.5m in length

was previously shown in Figure 1. Although not closely

related to the core contribution of this paper, it’s worth

noting that the block detection and grasp can also be

achieved without markers using Kinect sensor and the

author’s newly developed fast plane extraction

algorithm [25], as shown in Figure 8 and demonstrated

at the following URL: http://youtu.be/CyX4Pr_xly0.

5 Conclusion and Future Work

This paper reported algorithms and an implemented

robotic system that is able to automatically generate

building plans from computational architectural designs

and achieve these plans autonomously on construction

sites. In order to address the localization accuracy

challenge, the authors proposed a computer-vision-

based sub-centimetre-level metrology that enables pose

estimation using planar markers. The conducted

evaluation experiments used the designed robotic

system to autonomously build a curved wall of MDF

blocks, proving the algorithms and the system’s ability

to meet the accuracy requirement when building

computational architecture designs.

The authors’ current and planned work in this

research direction is focused on continuously improving

this system in aspects such as 3D perception for

efficient object grasping, autonomous navigation for

implementation on mobile platform, and improved and

stable control algorithms.

(a) Pick (b) Lift (c) Move (d) Drop

(e) Before change (f) During change (g) Auto-adapt to change (h) Successfully pick up

Kinect Sensor

Block Grasp

http://youtu.be/fj7AXRpj97o
http://youtu.be/CyX4Pr_xly0

References

[1] Rojas E. and Aramvareekul P. Is Construction

Labor Productivity Really Declining? Journal of

Construction Engineering and Management,

129(1):41-46, 2003.

[2] Bureau of Labor Statistics. Census of Fatal

Occupational Injuries. Online:

http://www.bls.gov/iif/oshcfoi1.htm#2009,

Accessed: 17/06/2012.

[3] Balaguer C. Nowadays trends in robotics and

automation in construction industry: Transition

from hard to soft robotics. In ISARC, Jeju. Korea,

2004.

[4] Saidi K., OʼBrien J. and Lytle A. Robotics in

Construction. In Springer Handbook of Robotics,

pages 1079-1099, 2008.

[5] Milberg C. and Tommelein I. Role of tolerances

and process capability data in product and process

design integration. In Proceedings of Construction

Research Congress, 2003.

[6] Milberg C. and Tommelein I. Application of

Tolerance Mapping in AEC Systems. In

Proceedings of Construction Research Congress,

2005.

[7] Kahane B. and Rosenfeld Y. Real-time "Sense-

and-Act" operation for construction robots.

Automation in construction, 13(6):751-764, 2004.

[8] Kim Y.S. and Haas C.T. A model for automation

of infrastructure maintenance using

representational forms. Automation in

Construction, 10(1):57-68, 2000.

[9] Gambao E., Balaguer C. and Gebhart F. Robot

assembly system for computer-integrated

construction. Automation in Construction,

9(5):479-487, 2000.

[10] Pritschow G., Dalacker M. and Kurz J.

Configurable control system of a mobile robot for

on-site construction of masonry. In ISARC, 1993.

[11] Shohet I. M. and Rosenfeld Y. Robotic mapping of

building interior—precision analysis. Automation

in construction, 7(1):1-12, 1997.

[12] Kümmerle R., Steder B., Dornhege C., Ruhnke M.,

Grisetti G., Stachniss C. and Kleiner A. On

measuring the accuracy of SLAM algorithms.

Autonomous Robots, 27(4):387-407, 2009.

[13] Feng C. and Kamat V.R. Plane Registration

Leveraged by Global Constraints for Context-

Aware AEC Applications. Computer-Aided Civil

and Infrastructure Engineering, 28(5):325-343,

2012.

[14] Olson E. AprilTag: A robust and flexible visual

fiducial system. In Proceedings of the IEEE

International Conference on Robotics and

Automation, 2011.

[15] Dierichs K., Schwinn T. and Menges A. Robotic

Pouring of Aggregate Structures. In Robotic

Fabrication in Architecture, Art, and Design, New

York, 2012.

[16] Dubor A. and Diaz G.B. Magnetic Architecture. In

Robotic Fabrication in Architecture, Art, and

Design, New York, 2012.

[17] Helm V., Ercan S., Gramazio F. and Kohler M. In-

Situ Robotic Construction: Extending the Digital

Fabrication Chain in Architecture. In Proceedings

of the 32nd Annual Conference of the Association

for Computer Aided Design in Architecture, San

Francisco, 2012.

[18] Zhang Z. A flexible new technique for camera

calibration. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 22(11):1330--

1334, 2000.

[19] Hartley R. and Zisserman A. Multiple view

geometry in computer vision. Cambridge

University Press, 2000.

[20] Triggs B., McLauchlan P.F., Hartley R.I. and

Fitzgibbon A.W. Bundle adjustment—a modern

synthesis. In Vision algorithms: theory and

practice, pages 298-372, 2000.

[21] Besl P.J. and McKay N.D. A Method for

Registration of 3-D Shapes. IEEE Transactions on

Pattern Analysis and Machine Intelligence,

14(2):239--256, 1992.

[22] Ahlquist S. and Menges A. Introduction:

Computational Design Thinking. In Computational

Design Thinking, pages 10-29, 2011.

[23] Pigram D., Maxwell I., McGee W., Hagenhofer-

Daniell B. and Vasey L. Protocols, Pathways, and

Production. In Robotic Fabrication in Architecture,

Art, and Design, New York, 2012.

[24] Mitchell W.J. Roll Over Euclid: How Frank Gehry

Designs and Builds. In Frank Gehry, Architect,

page 354, 2001.

[25] Feng C., Taguchi Y. and Kamat V.R. Fast Plane

Extraction in Organized Point Clouds Using

Agglomerative Hierarchical Clustering. In

Proceedings of the IEEE International Conference

on Robotics and Automation, 2014.

http://www.bls.gov/iif/oshcfoi1.htm#2009

